Canonical Form, Minterms & Maxterms

Prof. James L. Frankel Harvard University

Version of 10:36 AM 24-Feb-2023 Copyright © 2023, 2021 James L. Frankel. All rights reserved.

Canonical Forms: Sum of Products with Two Variables Showing Minterms

Minterm	А	В	Result
m _o	0	0	r _o
m ₁	0	1	r ₁
m ₂	1	0	r ₂
m ₃	1	1	r ₃

 $Result(A,B) = r_0 \overline{A}\overline{B} + r_1 \overline{A}B + r_2 A\overline{B} + r_3 AB$

The minterms are:

$m_0 = \overline{A}\overline{B}$	$m_2 = A\overline{B}$
$m_1 = \overline{AB}$	$m_3 = AB$

Because we know the values of r_0 through r_3 , those minterms where r_n is equal to 0 are omitted

Canonical Forms: Sum of Products with Three Variables

Α	В	С	Result
0	0	0	r _o
0	0	1	r ₁
0	1	0	r ₂
0	1	1	r ₃
1	0	0	r ₄
1	0	1	r ₅
1	1	0	r ₆
1	1	1	r ₇

 $Result(A, B, C) = r_0 \overline{A}\overline{B}\overline{C} + r_1 \overline{A}\overline{B}C + r_2 \overline{A}B\overline{C} + r_3 \overline{A}BC + r_4 A\overline{B}\overline{C} + r_5 A\overline{B}C + r_6 AB\overline{C} + r_7 ABC$

Canonical Forms: Sum of Products Example of Full Adder Using Sigma Minterm Notation

А	В	Carry _{in}	Sum	Carry _{out}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

 $Sum(A, B, Cin) = [m_1]\overline{ABC} + [m_2]\overline{ABC} + [m_4]A\overline{BC} + [m_7]ABC = \Sigma m(1, 2, 4, 7)$ $Carry_{out}(A, B, Cin) = [m_3]\overline{ABC} + [m_5]A\overline{BC} + [m_6]AB\overline{C} + [m_7]ABC = \Sigma m(3, 5, 6, 7)$ [The square brackets enclose comments]

Canonical Forms: Product of Sums with Two Variables Showing Maxterms

Maxterm	А	В	Result
M ₀	0	0	r _o
M ₁	0	1	r ₁
M ₂	1	0	r ₂
M ₃	1	1	r ₃

The maxterm for a row is the OR of each variable – uncomplemented if it is a 0 and complemented if it is a 1. AND together those maxterms where the Result is a 0.

Thus, a maxterm is the complement of the corresponding minterm; and, because we are selecting those rows where the Result is a 0, we are performing an additional complementation. This is tantamount to applying DeMorgan's Law to the Sum of Products formulation.

The maxterms are:

$$M_0 = (A + B) \qquad M_2 = (\overline{A} + B) \\M_1 = (A + \overline{B}) \qquad M_3 = (\overline{A} + \overline{B})$$

Canonical Forms: Conversion of Product of Sums to Sum of Products

Maxterm	А	В	Result
M ₀	0	0	r _o
M ₁	0	1	r ₁
M ₂	1	0	r ₂
M ₃	1	1	r ₃

 $Result(A,B) = \overline{r_0}(A+B) \cdot \overline{r_1}(A+\overline{B}) \cdot \overline{r_2}(\overline{A}+B) \cdot \overline{r_3}(\overline{A}+\overline{B})$ = Π M(where the Result, r_n, is 0)

Convert into Sum of Products form by choosing those rows where the Results are 1 rather than 0,

Result(A, B) = $r_0(\overline{AB}) + r_1(\overline{AB}) + r_2(A\overline{B}) + r_3(AB) = \Sigma$ m(where the Result, r_n, is 1)

Canonical Forms: Product of Sums with Three Variables

Α	В	С	Result
0	0	0	r _o
0	0	1	r ₁
0	1	0	r ₂
0	1	1	r ₃
1	0	0	r ₄
1	0	1	r ₅
1	1	0	r ₆
1	1	1	r ₇

 $Result(A, B, C) = \overline{r_0}(A + B + C) \cdot \overline{r_1}(A + B + \overline{C}) \cdot \overline{r_2}(A + \overline{B} + C) \cdot \overline{r_3}(A + \overline{B} + \overline{C}) \cdot \overline{r_4}(\overline{A} + B + C) \cdot \overline{r_5}(\overline{A} + B + \overline{C}) \cdot \overline{r_6}(\overline{A} + \overline{B} + C) \cdot \overline{r_7}(\overline{A} + \overline{B} + \overline{C})$

Full Adder Using Sum of Products and Product of Sums

- [The square brackets enclose comments]
- Sum of Products Using Sigma Minterm Notation
 - $Sum(A, B, Cin) = [m_1]\overline{A}\overline{B}C + [m_2]\overline{A}B\overline{C} + [m_4]A\overline{B}\overline{C} + [m_7]ABC = \Sigma m(1, 2, 4, 7)$
 - $Carry_{out}(A, B, Cin) = [m_3]\overline{ABC} + [m_5]A\overline{BC} + [m_6]AB\overline{C} + [m_7]ABC = \Sigma m(3, 5, 6, 7)$
- Product of Sums Using Pi Maxterm Notation
 - $Sum(A, B, Cin) = [M_0](A + B + C) \cdot [M_3](A + \overline{B} + \overline{C}) \cdot [M_5](\overline{A} + B + \overline{C}) \cdot [M_6](\overline{A} + \overline{B} + C) = \Pi M(0, 3, 5, 6)$
 - $Carry_{out}(A, B, Cin) = [M_0](A + B + C) \cdot [M_1](A + B + \overline{C}) \cdot [M_2](A + \overline{B} + C) \cdot [M_4](\overline{A} + B + C) = \Pi M(0, 1, 2, 4)$